Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol

Identifieur interne : 000167 ( PascalFrancis/Corpus ); précédent : 000166; suivant : 000168

Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol

Auteurs : YI MING ; V. Ramaswamy ; Paul A. Ginoux ; Larry W. Horowitz ; Lynn M. Russell

Source :

RBID : Pascal:06-0059813

Descripteurs français

English descriptors

Abstract

The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m-2, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is - 1.4 W m-2, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m-2, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m-2, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low latitudes and midlatitudes (north of 45°S). The area of significance extends more than for the first and second effects considered separately. A comparison with a number of previous studies based on the same sulfate-droplet relationship shows that, after distinguishing between forcing and flux change, the global mean change in watts per square meter for the total effect computed in this study is comparable to existing studies in spite of the differences in cloud schemes.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 110
A06       @2 D22
A08 01  1  ENG  @1 Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol
A11 01  1    @1 YI MING
A11 02  1    @1 RAMASWAMY (V.)
A11 03  1    @1 GINOUX (Paul A.)
A11 04  1    @1 HOROWITZ (Larry W.)
A11 05  1    @1 RUSSELL (Lynn M.)
A14 01      @1 Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 1 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 Scripps Institution of Oceanography, University of California, San Diego @2 La Jolla, California @3 USA @Z 5 aut.
A20       @2 D22206.1-D22206.11
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000134583860130
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 37 ref.
A47 01  1    @0 06-0059813
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m-2, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is - 1.4 W m-2, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m-2, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m-2, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low latitudes and midlatitudes (north of 45°S). The area of significance extends more than for the first and second effects considered separately. A comparison with a number of previous studies based on the same sulfate-droplet relationship shows that, after distinguishing between forcing and flux change, the global mean change in watts per square meter for the total effect computed in this study is comparable to existing studies in spite of the differences in cloud schemes.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  3  FRE  @0 Dynamique fluide géophysique @5 01
C03 01  3  ENG  @0 Geophysical fluid dynamics @5 01
C03 02  3  FRE  @0 Modèle circulation générale @5 02
C03 02  3  ENG  @0 General circulation models @5 02
C03 03  2  FRE  @0 Sulfate @5 03
C03 03  2  ENG  @0 sulfates @5 03
C03 03  2  SPA  @0 Sulfato @5 03
C03 04  2  FRE  @0 Aérosol @5 04
C03 04  2  ENG  @0 aerosols @5 04
C03 04  2  SPA  @0 Aerosol @5 04
C03 05  2  FRE  @0 Atmosphère @5 05
C03 05  2  ENG  @0 atmosphere @5 05
C03 05  2  SPA  @0 Atmósfera @5 05
C03 06  2  FRE  @0 Nuage @5 06
C03 06  2  ENG  @0 clouds @5 06
C03 06  2  SPA  @0 Nube @5 06
C03 07  X  FRE  @0 Climatologie @5 07
C03 07  X  ENG  @0 Climatology @5 07
C03 07  X  SPA  @0 Climatología @5 07
C03 08  2  FRE  @0 Ozone @5 08
C03 08  2  ENG  @0 ozone @5 08
C03 08  2  SPA  @0 Ozono @5 08
C03 09  2  FRE  @0 Traceur chimique @5 09
C03 09  2  ENG  @0 chemical tracers @5 09
C03 10  2  FRE  @0 Transport @5 10
C03 10  2  ENG  @0 transport @5 10
C03 10  2  SPA  @0 Transporte @5 10
C03 11  2  FRE  @0 Monde @5 11
C03 11  2  ENG  @0 global @5 11
C03 11  2  SPA  @0 Mundo @5 11
C03 12  2  FRE  @0 Gouttelette @5 12
C03 12  2  ENG  @0 droplets @5 12
C03 13  2  FRE  @0 Concentration @5 13
C03 13  2  ENG  @0 concentration @5 13
C03 13  2  SPA  @0 Concentración @5 13
C03 14  X  FRE  @0 Forçage @5 14
C03 14  X  ENG  @0 Forcing @5 14
C03 14  X  SPA  @0 Forzamiento @5 14
C03 15  2  FRE  @0 Simulation numérique @5 15
C03 15  2  ENG  @0 digital simulation @5 15
C03 15  2  SPA  @0 Simulación numérica @5 15
C03 16  X  FRE  @0 Température surface marine @5 16
C03 16  X  ENG  @0 Sea surface temperature @5 16
C03 16  X  SPA  @0 Temperature superficie marina @5 16
C03 17  2  FRE  @0 Hémisphère Nord @5 17
C03 17  2  ENG  @0 Northern Hemisphere @5 17
C03 17  2  SPA  @0 Hemisferio norte @5 17
C03 18  X  FRE  @0 Onde longue @5 18
C03 18  X  ENG  @0 Long wave @5 18
C03 18  X  SPA  @0 Onda larga @5 18
C03 19  3  FRE  @0 Flux solaire @5 19
C03 19  3  ENG  @0 Solar flux @5 19
C03 20  2  FRE  @0 Rayonnement @5 20
C03 20  2  ENG  @0 radiation @5 20
C03 20  2  SPA  @0 Radiación @5 20
C03 21  X  FRE  @0 Répartition géographique @5 21
C03 21  X  ENG  @0 Geographic distribution @5 21
C03 21  X  SPA  @0 Distribución geográfica @5 21
C03 22  X  FRE  @0 Variabilité @5 22
C03 22  X  ENG  @0 Variability @5 22
C03 22  X  SPA  @0 Variabilidad @5 22
C03 23  2  FRE  @0 Hémisphère Sud @5 23
C03 23  2  ENG  @0 Southern Hemisphere @5 23
C03 23  2  SPA  @0 Hemisferio sur @5 23
C03 24  X  FRE  @0 Basse latitude @5 24
C03 24  X  ENG  @0 Low latitude @5 24
C03 24  X  SPA  @0 Baja latitud @5 24
C03 25  X  FRE  @0 Moyenne latitude @5 25
C03 25  X  ENG  @0 Mid latitude @5 25
C03 25  X  SPA  @0 Latitud media @5 25
N21       @1 030
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0059813 INIST
ET : Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol
AU : YI MING; RAMASWAMY (V.); GINOUX (Paul A.); HOROWITZ (Larry W.); RUSSELL (Lynn M.)
AF : Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (2 aut., 3 aut., 4 aut.); Scripps Institution of Oceanography, University of California, San Diego/La Jolla, California/Etats-Unis (5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D22; D22206.1-D22206.11; Bibl. 37 ref.
LA : Anglais
EA : The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m-2, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is - 1.4 W m-2, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m-2, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m-2, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low latitudes and midlatitudes (north of 45°S). The area of significance extends more than for the first and second effects considered separately. A comparison with a number of previous studies based on the same sulfate-droplet relationship shows that, after distinguishing between forcing and flux change, the global mean change in watts per square meter for the total effect computed in this study is comparable to existing studies in spite of the differences in cloud schemes.
CC : 220; 001E; 001E01
FD : Dynamique fluide géophysique; Modèle circulation générale; Sulfate; Aérosol; Atmosphère; Nuage; Climatologie; Ozone; Traceur chimique; Transport; Monde; Gouttelette; Concentration; Forçage; Simulation numérique; Température surface marine; Hémisphère Nord; Onde longue; Flux solaire; Rayonnement; Répartition géographique; Variabilité; Hémisphère Sud; Basse latitude; Moyenne latitude
ED : Geophysical fluid dynamics; General circulation models; sulfates; aerosols; atmosphere; clouds; Climatology; ozone; chemical tracers; transport; global; droplets; concentration; Forcing; digital simulation; Sea surface temperature; Northern Hemisphere; Long wave; Solar flux; radiation; Geographic distribution; Variability; Southern Hemisphere; Low latitude; Mid latitude
SD : Sulfato; Aerosol; Atmósfera; Nube; Climatología; Ozono; Transporte; Mundo; Concentración; Forzamiento; Simulación numérica; Temperature superficie marina; Hemisferio norte; Onda larga; Radiación; Distribución geográfica; Variabilidad; Hemisferio sur; Baja latitud; Latitud media
LO : INIST-3144.354000134583860130
ID : 06-0059813

Links to Exploration step

Pascal:06-0059813

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol</title>
<author>
<name sortKey="Yi Ming" sort="Yi Ming" uniqKey="Yi Ming" last="Yi Ming">YI MING</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswamy, V" sort="Ramaswamy, V" uniqKey="Ramaswamy V" first="V." last="Ramaswamy">V. Ramaswamy</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul A" sort="Ginoux, Paul A" uniqKey="Ginoux P" first="Paul A." last="Ginoux">Paul A. Ginoux</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Russell, Lynn M" sort="Russell, Lynn M" uniqKey="Russell L" first="Lynn M." last="Russell">Lynn M. Russell</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Scripps Institution of Oceanography, University of California, San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0059813</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0059813 INIST</idno>
<idno type="RBID">Pascal:06-0059813</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000167</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol</title>
<author>
<name sortKey="Yi Ming" sort="Yi Ming" uniqKey="Yi Ming" last="Yi Ming">YI MING</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswamy, V" sort="Ramaswamy, V" uniqKey="Ramaswamy V" first="V." last="Ramaswamy">V. Ramaswamy</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul A" sort="Ginoux, Paul A" uniqKey="Ginoux P" first="Paul A." last="Ginoux">Paul A. Ginoux</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Russell, Lynn M" sort="Russell, Lynn M" uniqKey="Russell L" first="Lynn M." last="Russell">Lynn M. Russell</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Scripps Institution of Oceanography, University of California, San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climatology</term>
<term>Forcing</term>
<term>General circulation models</term>
<term>Geographic distribution</term>
<term>Geophysical fluid dynamics</term>
<term>Long wave</term>
<term>Low latitude</term>
<term>Mid latitude</term>
<term>Northern Hemisphere</term>
<term>Sea surface temperature</term>
<term>Solar flux</term>
<term>Southern Hemisphere</term>
<term>Variability</term>
<term>aerosols</term>
<term>atmosphere</term>
<term>chemical tracers</term>
<term>clouds</term>
<term>concentration</term>
<term>digital simulation</term>
<term>droplets</term>
<term>global</term>
<term>ozone</term>
<term>radiation</term>
<term>sulfates</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dynamique fluide géophysique</term>
<term>Modèle circulation générale</term>
<term>Sulfate</term>
<term>Aérosol</term>
<term>Atmosphère</term>
<term>Nuage</term>
<term>Climatologie</term>
<term>Ozone</term>
<term>Traceur chimique</term>
<term>Transport</term>
<term>Monde</term>
<term>Gouttelette</term>
<term>Concentration</term>
<term>Forçage</term>
<term>Simulation numérique</term>
<term>Température surface marine</term>
<term>Hémisphère Nord</term>
<term>Onde longue</term>
<term>Flux solaire</term>
<term>Rayonnement</term>
<term>Répartition géographique</term>
<term>Variabilité</term>
<term>Hémisphère Sud</term>
<term>Basse latitude</term>
<term>Moyenne latitude</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m
<sup>-2</sup>
, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is - 1.4 W m
<sup>-2</sup>
, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m
<sup>-2</sup>
, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m
<sup>-2</sup>
, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low latitudes and midlatitudes (north of 45°S). The area of significance extends more than for the first and second effects considered separately. A comparison with a number of previous studies based on the same sulfate-droplet relationship shows that, after distinguishing between forcing and flux change, the global mean change in watts per square meter for the total effect computed in this study is comparable to existing studies in spite of the differences in cloud schemes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>110</s2>
</fA05>
<fA06>
<s2>D22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YI MING</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAMASWAMY (V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GINOUX (Paul A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RUSSELL (Lynn M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Scripps Institution of Oceanography, University of California, San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>D22206.1-D22206.11</s2>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000134583860130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0059813</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m
<sup>-2</sup>
, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is - 1.4 W m
<sup>-2</sup>
, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m
<sup>-2</sup>
, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m
<sup>-2</sup>
, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low latitudes and midlatitudes (north of 45°S). The area of significance extends more than for the first and second effects considered separately. A comparison with a number of previous studies based on the same sulfate-droplet relationship shows that, after distinguishing between forcing and flux change, the global mean change in watts per square meter for the total effect computed in this study is comparable to existing studies in spite of the differences in cloud schemes.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dynamique fluide géophysique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Geophysical fluid dynamics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Modèle circulation générale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>General circulation models</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Sulfate</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>sulfates</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Sulfato</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Atmosphère</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>atmosphere</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Atmósfera</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Nuage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>clouds</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Nube</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Climatologie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Climatology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Climatología</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>ozone</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Traceur chimique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>chemical tracers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Transport</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>transport</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Monde</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>global</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Gouttelette</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>droplets</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Simulation numérique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>digital simulation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Simulación numérica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Température surface marine</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Sea surface temperature</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Temperature superficie marina</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Hémisphère Nord</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Northern Hemisphere</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Hemisferio norte</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Onde longue</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Long wave</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Onda larga</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Flux solaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Solar flux</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Rayonnement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>radiation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Radiación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Répartition géographique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Geographic distribution</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Distribución geográfica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Variabilité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Variability</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Variabilidad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Hémisphère Sud</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>Southern Hemisphere</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Hemisferio sur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Basse latitude</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Low latitude</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Baja latitud</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Moyenne latitude</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Mid latitude</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Latitud media</s0>
<s5>25</s5>
</fC03>
<fN21>
<s1>030</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0059813 INIST</NO>
<ET>Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol</ET>
<AU>YI MING; RAMASWAMY (V.); GINOUX (Paul A.); HOROWITZ (Larry W.); RUSSELL (Lynn M.)</AU>
<AF>Visiting Scientist Program, University Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (2 aut., 3 aut., 4 aut.); Scripps Institution of Oceanography, University of California, San Diego/La Jolla, California/Etats-Unis (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D22; D22206.1-D22206.11; Bibl. 37 ref.</SO>
<LA>Anglais</LA>
<EA>The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m
<sup>-2</sup>
, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is - 1.4 W m
<sup>-2</sup>
, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m
<sup>-2</sup>
, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m
<sup>-2</sup>
, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low latitudes and midlatitudes (north of 45°S). The area of significance extends more than for the first and second effects considered separately. A comparison with a number of previous studies based on the same sulfate-droplet relationship shows that, after distinguishing between forcing and flux change, the global mean change in watts per square meter for the total effect computed in this study is comparable to existing studies in spite of the differences in cloud schemes.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Dynamique fluide géophysique; Modèle circulation générale; Sulfate; Aérosol; Atmosphère; Nuage; Climatologie; Ozone; Traceur chimique; Transport; Monde; Gouttelette; Concentration; Forçage; Simulation numérique; Température surface marine; Hémisphère Nord; Onde longue; Flux solaire; Rayonnement; Répartition géographique; Variabilité; Hémisphère Sud; Basse latitude; Moyenne latitude</FD>
<ED>Geophysical fluid dynamics; General circulation models; sulfates; aerosols; atmosphere; clouds; Climatology; ozone; chemical tracers; transport; global; droplets; concentration; Forcing; digital simulation; Sea surface temperature; Northern Hemisphere; Long wave; Solar flux; radiation; Geographic distribution; Variability; Southern Hemisphere; Low latitude; Mid latitude</ED>
<SD>Sulfato; Aerosol; Atmósfera; Nube; Climatología; Ozono; Transporte; Mundo; Concentración; Forzamiento; Simulación numérica; Temperature superficie marina; Hemisferio norte; Onda larga; Radiación; Distribución geográfica; Variabilidad; Hemisferio sur; Baja latitud; Latitud media</SD>
<LO>INIST-3144.354000134583860130</LO>
<ID>06-0059813</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000167 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000167 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0059813
   |texte=   Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023